Silanes

An Isolable Radical Anion and Dianion of a Cyclotetrasilane: Synthesis and Structure of $[Si\{1,2-(NEt)_2C_6H_4\}]_4^{-\cdot}$ and $[Si\{1,2-(NEt)_2C_6H_4\}]_4^{2-**}$

Barbara Gehrhus,* Peter B. Hitchcock, and Lihong Zhang

The stability of isolable N-heterocyclic silylenes^[1,2] has its origin in a significant π delocalization in the five-membered ring of Si[N(tBu)CHCHNtBu] (**A**)^[3] or the benzo-annulated

 $Si[1,2-(NCH_2tBu)_2C_6H_4]$ (**B**)^[4] with incorporation of the formally empty silicon out-of-plane p orbital. [5,6] In contrast, the silylene Si[N(tBu)- CH_2CH_2NtBu] (C),^[7] which lacks π delocalization is only marginally stable and converts into its stable tetramer. [8] But how important is the steric protection provided by the bulky tBu or CH₂tBu groups in the stable silvlenes A and B, respectively, and what effect will a reduction of the size of the substituent at the nitrogen atom have on the stability of a two-coordinate silicon species? Herein we report 1) the reduction of the $Cl_2Si[1,2-(NR)_2C_6H_4]$ (R = Et; 3) analogue of the silvlene precursor of **B** ($R = CH_2tBu$) with potassium, 2) the synthesis of the first isolable and structurally characterized radical anion of a cyclotetrasilane, $[Si\{1,2-(NEt)_2C_6H_4\}]_4^{-\bullet}$, and 3) its dianion $[Si\{1,2-(NEt)_2C_6H_4\}]_4^{2-}$.

Reduction of $\text{Cl}_2\text{Si}[1,2\text{-}(\text{NEt})_2\text{C}_6\text{H}_4]$ (3)^[9] with potassium in THF at ambient temperature afforded a product mixture of the potassium salt of the radical anion $\mathbf{1}^{-\bullet}$ and the dianion $\mathbf{2}^{2-}$ (Scheme 1). Complex **1** could be isolated from the mixture as green crystals at $-25\,^{\circ}\text{C}$ whereas the orange complex **2** was crystallized from DME.

The structure of $\mathbf{1}^{[10]}$ shows the potassium cation solvent-separated from the cyclotetrasilane radical anion (Figure 1) whilst for the structure of $\mathbf{2}^{[11]}$ the solvated potassium cations have η^2 -coordination to the 3,3'-C atoms (C14, C15) of the *o*-phenylene ring (Figure 2). In both, $\mathbf{1}$ and $\mathbf{2}$, the cyclotetrasilane ring lies on an inversion centre and the $\{\text{Si}_4\}$ core is planar. The Si1–Si2 bond length in $\mathbf{1}$ of 2.347(2) Å (see Table 1) is slightly shorter compared to Si–Si bond lengths

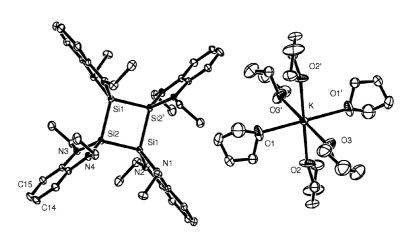


Figure 1. Molecular structure of 1 (thermal ellipsoids set at 20 % probability).

Scheme 1.

[*] Dr. B. Gehrhus, Dr. P. B. Hitchcock, L. Zhang Department of Chemistry School of Life Science University of Sussex Brighton, BN1 9QJ (UK) Fay: (4-44) 1273-677-196

Fax: (+44) 1273-677-196 E-mail: b.gehrhus@sussex.ac.uk

[**] We thank the EPSRC for the award of an Advanced Fellowship for $_{\mbox{\footnotesize R}\mbox{\ G}}$

which are found in cyclopolysilanes (av. $2.372 \text{ Å})^{[12]}$ or for tetrasilacyclobutanes ($2.363-2.445 \text{ Å}).^{[13]}$ Even further reduction of the Si1–Si2 bond length is found for complex **2** (2.284(2) Å), which is close to the range of Si–Si double bonds ($2.138-2.261 \text{ Å})^{[12]}$ and may also be compared to the Si–Si bonds in a *Z*-diaminodisilyldisilene (the tetramer of **C**; $2.289 \text{ Å})^{[8]}$ or cyclotetrasilenes (2.174, $2.257 \text{ Å}).^{[14,15]}$ The substantial shortening of the Si–Si bond in **1** and **2** can be

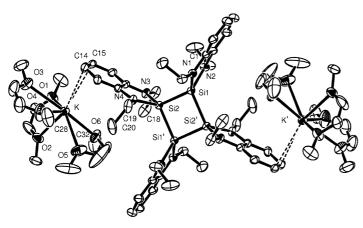


Figure 2. Molecular structure of 2 (thermal ellipsoids set at 20 % probability).

Table 1: Selected bond lengths [Å] and angles [°] of compounds 1 and 2.

Bond	1	2	Angle	1	2
Si1-Si2'	2.346(2)	2.284(2)	Si2'-Si1-Si2	90.27(6)	89.87(5)
Si1-Si2	2.347(2)	2.284(2)	Si1'-Si2-Si1	89.73 (6)	90.13(5)
Si1-N1	1.768(4)	1.814(3)	N1-Si1-N2	88.6(2)	85.2(2)
Si1-N2	1.775(4)	1.799(4)	N3-Si2-N4	88.6(2)	84.7(2)
Si2-N3	1.770(4)	1.807(3)			
Si2-N4	1.765(4)	1.812(3)			
K···C14 K···C15		3.137(5)			
KC12		3.266(5)			

attributed to the additional one or two electrons, respectively, which are delocalized in the Si_4 ring.

ESR-spectroscopic analysis^[16] (Figure 3a) of **1** (g_{iso} = 2.0025, a = 3.5 G) shows 15 of the 17 expected lines (2nI + 1, I = 1, n = 8) consistent with the electron being delocalized over the Si₄ ring and is in good agreement with the simulated spectrum (Figure 3b).

Alkali-metal reduction of a cyclosilane to obtain a radical anion is a long established method. A wide range of ESR spectroscopic analysis shows that the unpaired electron is

delocalized over the resulting cyclopolysilane ring.^[17-19] All of these radical anions of cyclosilanes are labile and are only detected at low temperature. Persistent radical anions of ladder oligosilanes were reported recently.^[20] The radical anion 1⁻¹ of complex 1 is the first thermally robust, crystalline and structurally characterized radical anion of a cyclopolysilane.

The proposed mechanism leading to $\bf 1$ and $\bf 2$ may involve pathways (a), (b) and/or (c) (Scheme 2). Precedence for pathway (a) is found in the reported formation of $\bf 6$ and $\bf 7$ (where (NN)Si= $\bf C$)^[21] by reduction of $\bf C$ with Na/K or the formation of $\bf 7$ (where (NN)Si= $\bf B$) by reduction of $\bf B$ with potassium. Precedence for pathway (b) is the report that the transient silylene (tBu_3Si)SiCl inserts into the Si-Na bond of its precursor (tBuSi)SiCl₂Na; in the present context this

corresponds to the insertion of **5** into the Si–K bond of **4** to form **8**. This insertion was found to proceed more readily than insertion into the Si–H bond of the common silylene trap Et₃SiH and was accompanied by one or two further insertions of (*t*BuSi)SiCl into the Si–Na bond of the successive intermediates, which led, after elimination of NaCl, to the corresponding cyclosilanes (*t*BuSiSiCl)₃ and (*t*BuSiSiCl)₄.^[23] A third pathway (c) is possible, which is commonly suggested for the synthesis of cyclooligosilanes by reductive dehalogenation of halosilanes, which in this case would proceed by reaction of **4** with the dichlorosilane **3** to yield a 1,2-dichlorodisilane **10**. Successive metallation and reaction with **3** followed by elimination of NaCl would also lead to intermediate **9**.

Complex **2** can readily be converted into **1** by, for example, treatment with **3**. Attempts to isolate the neutral cyclotetrasilane [Si{1,2-(NEt)₂C₆H₄}]₄ (cf., **9** in Scheme 2) have so far been unsuccessful, presumably owing

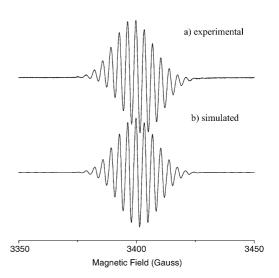


Figure 3. ESR spectrum of 1.

$$(NN)Si \stackrel{Cl}{\leftarrow} K \qquad (NN)Si \stackrel{K}{\leftarrow} K \qquad (NN)Si \stackrel{K$$

Scheme 2.

Zuschriften

to the readiness of $[Si\{1,2-(NEt)_2C_6H_4]]_4$ to take up a single electron. Surprisingly, the reduction of $Cl_2Si[1,2-(NR)_2C_6H_4]$ upon changing the substituent at N from R = Et to the bulkier iBu led to a similar formation of a cyclotetrasilane radical anion and dianion, which will be reported in the full paper. The neopentyl substituent $(R = CH_2tBu)$ therefore seems ideally suited to provide steric protection for the silylene **B**.

Experimental Section

1: Potassium (1.45 g, 0.037 mol) was added to a solution of **3** (4.85 g, 0.019 mol) in THF (150 mL) at ambient temperature. The mixture initially turned green and after stirring for 2 days to green brown. The mixture was filtered and the green residue was extracted with hot THF. The extract was concentrated and green crystals of compound **1** were obtained at -25 °C.

2: Potassium (3.5 g, 0.89 mol) was added to a solution of **3** (5.85 g, 0.022 mol) in THF (150 mL) at ambient temperature. The mixture initially turned green. The mixture was stirred for 5 days then filtered and the solvent was removed from the red-brown filtrate. The residue was crystallized from DME yielding orange crystals of compound **2** (4.9 g, 64%). ¹H NMR (300 MHz, [D]₈THF): δ = 1.05 (br,s, 6 H, CH₃), 3.26 (dme), 3.42 (dme), 3.78 (br,d, 4H, CH₂), 5.95 (m, 2H, phenyl), 6.09 ppm (m, 2H, phenyl). ²⁹Si{¹H} NMR (99.3 MHz, [D]₈THF): δ = -45.2 ppm.

Received: September 16, 2003 [Z52882]

Keywords: radical anions \cdot silanes \cdot silicon \cdot silylene \cdot small ring systems

- [1] M. Haaf, T. A. Schmedake, R. West, Acc. Chem. Res. 2000, 33, 704
- [2] B. Gehrhus, M. F. Lappert, J. Organomet. Chem. 2001, 617, 209.
- [3] M. Denk, R. Lennon, R. Hayashi, R. West, A. V. Belyakov, H. P. Verne, A. Haaland, M. Wagner, N. Metzler, *J. Am. Chem. Soc.* 1994, 116, 2691.
- [4] B. Gehrhus, P. B. Hitchcock, M. F. Lappert, J. Heinicke, R. Boese, D. Bläser, J. Organomet. Chem. 1996, 521, 211.
- [5] M. Denk, J. C. Green, N. Metzler, M. Wagner, J. Chem. Soc. Dalton Trans. 1994, 2405.
- [6] P. Blakeman, B. Gehrhus, J. C. Green, J. Heinicke, M. F. Lappert, M. Kindermann, T. Veszprémi, J. Chem. Soc. Dalton Trans. 1996, 1475.
- [7] R. West, M. Denk, Pure Appl. Chem. 1996, 68, 785.
- [8] T. A. Schmedake, M. Haaf, Y. Apeloig, T. Müller, S. Bukalov, R. West, J. Am. Chem. Soc. 1999, 121, 9479.
- [9] Synthesis of 3 is similar to the synthesis of Cl₂Si[1,2-(NCH₂tBu)₂C₆H₄] in ref. [4].
- [10] Crystal data for 1: C_{64} H₁₀₄KN₈O₆Si₄, M_r =1233.01, specimen $0.20\times0.05\times0.05$ mm³, monoclinic, space group $P2_1$ /n (No. 14), a=18.2955(7), b=9.4645(4), c=20.0260(8) Å, β =91.757(2)°, U=3466.0(2) ų, Z=2, μ =0.20 mm¹, T=173(2) K, 4775 unique reflections collected, R_1 =0.069 for 3212 reflections with $I>2\sigma(I)$, wR_2 =0.174 for all reflections, Data collection KappaCCD, full-matrix least-squares refinement on F^2 , SHELX-97. CCDC-218118 (1) and CCDC-218119 (2) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).
- [11] Crystal data for **2**: $C_{64}H_{116}K_2N_8O_{12}Si_4$, $M_r = 1380.21$, specimen $0.20 \times 0.20 \times 0.05 \text{ mm}^3$, monoclinic, space group $P2_1/n$ (No. 14),

- a = 12.7165(2), b = 19.0891(4), c = 17.2205(4) Å, $\beta = 109.724(1)^{\circ}$, U = 3934.96(14) Å³, Z = 2, $\mu = 0.24$ mm⁻¹, T = 173(2) K, 5295 unique reflections collected, $R_1 = 0.0631$ for 3774 reflections with $I > 2\sigma(I)$, $wR_2 = 0.178$ for all reflections, Data collection KappaCCD, full-matrix least-squares refinement on F^2 , SHELX-97. (CCDC reference number 218119.)
- [12] M. Kaftory, M. Kapon, M. Botoshansky, The Chemistry of Organosilicon Compounds, Vol. 2, Wiley, New York, 1998.
- [13] H. Suzuki, K. Okabe, R. Kato, N. Sato, Y. Fukuda, H. Watanabe, M. Goto, Organometallics 1993, 12, 4833.
- [14] M. Kira, T. Iwamoto, C. Kabuto, J. Am. Chem. Soc. 1996, 118, 10303.
- [15] N. Wiberg, H. Auer, H. Nöth, J. Knizek, K. Polborn, Angew. Chem. 1998, 110, 3030; Angew. Chem. Int. Ed. 1998, 37, 2869.
- [16] ESR measurement and simulation: D. M. Murphy at the EPSRC National ENDOR Service, Cardiff University, UK.
- [17] R. West, Pure Appl. Chem. 1982, 54, 1041.
- [18] C. L. Wadsworth, R. West, Organometallics 1985, 4, 1659.
- [19] E. Hengge, R. Janoschek, Chem. Rev. 1995, 95, 1495.
- [20] S. Kyushin, Y. Miyajima, H. Matsumoto, Chem. Lett. 2000, 1420.
- [21] R. West, T. A. Schmedake, M. Haaf, J. Becker, T. Mueller, *Chem. Lett.* 2001, 68.
- [22] B. Gehrhus, P. B. Hitchcock, R. Pongtavornpinyo, unpublished results.
- [23] N. Wiberg, W. Niedermayer, J. Organomet. Chem. 2001, 628, 57.